Facilities (Learning Spaces)

Combined Schools Boost Sustainability

While the Beavercreek School District initially retained SHP Leading Design to design and engineer two separate new schools — a 92,000-square-foot elementary school for 700 students and a 163,000-square-foot middle school for 1,150 students — additional planning and research revealed that a combined campus could realize a number of advantages while still giving both schools a separate identity and feel.

The combined, 50-acre campus that opened in 2013 offers numerous economies of scale advantages. It eliminated the need to develop two separate sites and construct separate access roads and turn lanes, and made it possible to share a physical plant, HVAC system, kitchen, technology infrastructure and maintenance staff . A shared quadrangle both unites and separates the schools, which have their own dining areas, gymnasiums, administrative offices, playground areas and parking lots to help them achieve the two-school feel the district required.

Energy-efficient construction methods and materials were used throughout to help ensure the new schools would operate efficiently from day one and in the future. An independent energy audit of the new campus revealed that the district will realize $150,000 in electricity savings annually, earning a record $492,000 energy rebate from Dayton Power & Light (DP&L). The rebate, combined with an $86,768 DP&L rebate for energy efficiency improvements at six existing buildings, brought total rebates earned by Beavercreek from DP&L to $578,819 which represents the largest energy rebate in the utility company’s history.

High efficiency measures in the Beavercreek City Schools building program included the following.

  • A geothermal heating and cooling system that uses the earth as a source of heat in the winter and cooling in the summer. The closed-loop system is expected to deliver up to 30 percent in energy savings over conventional heating and cooling systems, with payback for the additional cost of the system expected in less than 10 years.
  • Insulated Concrete Form (ICF) walls that make up the structure of the building. The system of rigid, insulated foam blocks are reinforced with steel and filled with concrete. ICF walls have a high thermal resistance value, and the insulation they provide reduces heat loss and contributes to further energy savings.
  • Daylight harvesting that utilizes high windows to allow daylight to penetrate deep into classrooms, where the light level is monitored and artificial lights are adjusted as appropriate. This technique requires less artificial light and cooling, minimizing both electrical and cooling demands.
  • Sloped ceilings were incorporated into the design of classrooms to allow natural light to be better reflected and retained.
  • Solar tubes lined with highly reflective material were installed; these tubes lead and transport natural light from roof skylights into interior spaces, which provide more natural lighting and greater energy savings.
  • Triple-glazed glass windowpanes that are separated by an air-filled space to reduce heat transfer and increase insulation efficiency.
  • Occupancy sensors and daylighting controls that detect whether a space is being used and turn lights on or off automatically so energy output can be minimized at all times.

This article originally appeared in the August 2014 issue of School Planning & Management.

About the Authors

Jeff Parker is an architect and project manager at SHP Leading Design in Cincinnati, Ohio.

Jim Messner is an associate and the director of Engineering with SHP Leading Design in Cincinnati. He has been involved in school design for nine years.

Share this Page


Do you agree that education facilities should be among the top three priorities of the federal infrastructure spending package?



Subscribe to SP&M E-News

School Planning & Management's free email newsletter keeping you up-to-date and informed.

I agree to this sites Privacy Policy.